Lateral Inhibition
   HOME

TheInfoList



OR:

In
neurobiology Neuroscience is the scientific study of the nervous system (the brain, spinal cord, and peripheral nervous system), its functions and disorders. It is a multidisciplinary science that combines physiology, anatomy, molecular biology, developme ...
, lateral inhibition is the capacity of an excited
neuron A neuron, neurone, or nerve cell is an electrically excitable cell that communicates with other cells via specialized connections called synapses. The neuron is the main component of nervous tissue in all animals except sponges and placozoa. N ...
to reduce the activity of its neighbors. Lateral inhibition disables the spreading of
action potentials An action potential occurs when the membrane potential of a specific cell location rapidly rises and falls. This depolarization then causes adjacent locations to similarly depolarize. Action potentials occur in several types of animal cells, c ...
from excited neurons to neighboring neurons in the lateral direction. This creates a contrast in stimulation that allows increased sensory perception. It is also referred to as lateral antagonism and occurs primarily in visual processes, but also in
tactile Tactile may refer to: * Tactile, related to the sense of touch * Haptics (disambiguation) * Tactile (device), a text-to-braille translation device See also * Tangibility, in law * Somatosensory system, where sensations are processed * CD96 CD ...
, auditory, and even
olfactory The sense of smell, or olfaction, is the special sense through which smells (or odors) are perceived. The sense of smell has many functions, including detecting desirable foods, hazards, and pheromones, and plays a role in taste. In humans, it ...
processing. Cells that utilize lateral inhibition appear primarily in the
cerebral cortex The cerebral cortex, also known as the cerebral mantle, is the outer layer of neural tissue of the cerebrum of the brain in humans and other mammals. The cerebral cortex mostly consists of the six-layered neocortex, with just 10% consisting of ...
and
thalamus The thalamus (from Greek θάλαμος, "chamber") is a large mass of gray matter located in the dorsal part of the diencephalon (a division of the forebrain). Nerve fibers project out of the thalamus to the cerebral cortex in all directions, ...
and make up lateral inhibitory networks (LINs). Artificial lateral inhibition has been incorporated into artificial sensory systems, such as
vision chip A vision chip is an integrated circuit having both image sensing circuitry and image processing circuitry on the same die. The image sensing circuitry may be implemented using charge-coupled devices, active pixel sensor circuits, or any other ligh ...
s, hearing systems, and optical mice. An often under-appreciated point is that although lateral inhibition is visualised in a spatial sense, it is also thought to exist in what is known as "lateral inhibition across abstract dimensions." This refers to lateral inhibition between neurons that are not adjacent in a spatial sense, but in terms of modality of stimulus. This phenomenon is thought to aid in colour discrimination.


History

The concept of neural inhibition (in motor systems) was well known to Descartes and his contemporaries. Sensory inhibition in vision was inferred by
Ernst Mach Ernst Waldfried Josef Wenzel Mach ( , ; 18 February 1838 – 19 February 1916) was a Moravian-born Austrian physicist and philosopher, who contributed to the physics of shock waves. The ratio of one's speed to that of sound is named the Mach ...
in 1865 as depicted in his
mach band Mach bands is an optical illusion named after the physicist Ernst Mach. It exaggerates the contrast between edges of the slightly differing shades of gray, as soon as they contact one another, by triggering edge-detection in the human visual s ...
. Inhibition in single sensory neurons was discovered and investigated starting in 1949 by Haldan K. Hartline when he used logarithms to express the effect of Ganglion receptive fields. His algorithms also help explain the experiment conducted by
David H. Hubel David Hunter Hubel (February 27, 1926 – September 22, 2013) was a Canadian American neurophysiologist noted for his studies of the structure and function of the visual cortex. He was co-recipient with Torsten Wiesel of the 1981 Nobel Pri ...
and
Torsten Wiesel Torsten Nils Wiesel (born 3 June 1924) is a Swedish neurophysiologist. With David H. Hubel, he received the 1981 Nobel Prize in Physiology or Medicine, for their discoveries concerning information processing in the visual system; the prize was ...
that expressed a variation of sensory processing, including lateral inhibition, within different species. In 1956, Hartline revisited this concept of lateral inhibition in
horseshoe crab Horseshoe crabs are marine and brackish water arthropods of the family Limulidae and the only living members of the order Xiphosura. Despite their name, they are not true crabs or crustaceans: they are chelicerates, most closely related to arachn ...
(Limulus polyphemus) eyes, during an experiment conducted with the aid of Henry G Wagner and Floyd Ratliff. Hartline explored the anatomy of
ommatidia The compound eyes of arthropods like insects, crustaceans and millipedes are composed of units called ommatidia (singular: ommatidium). An ommatidium contains a cluster of photoreceptor cells surrounded by support cells and pigment cells. The ...
in the horseshoe crab because of their similar function and physiological anatomy to photoreceptors in the human eye. Also, they are much larger than photoreceptors in humans, which would make them much easier to observe and record. Hartline contrasted the response signal of the ommatidium when a single concentrated beam of light was directed at one receptor unit as opposed to three surrounding units. He further supported his theory of lateral inhibition as the response signal of one unit was stronger when the surrounding units were not exposed to light.


Sensory inhibition

Georg von Békésy Georg von Békésy ( hu, Békésy György, ; 3 June 1899 – 13 June 1972) was a Hungarian-American biophysicist. By using strobe photography and silver flakes as a marker, he was able to observe that the basilar membrane moves like a surface w ...
, in his book ''Sensory Inhibition'', explores a wide range of inhibitory phenomena in
sensory systems The sensory nervous system is a part of the nervous system responsible for processing sensory information. A sensory system consists of sensory neurons (including the sensory receptor cells), neural pathways, and parts of the brain involved i ...
, and interprets them in terms of sharpening.


Visual inhibition

Lateral inhibition increases the contrast and sharpness in visual response. This phenomenon already occurs in the mammalian
retina The retina (from la, rete "net") is the innermost, light-sensitive layer of tissue of the eye of most vertebrates and some molluscs. The optics of the eye create a focused two-dimensional image of the visual world on the retina, which then ...
. In the dark, a small light stimulus will enhance the different photoreceptors (
rod cells Rod cells are photoreceptor cells in the retina of the eye that can function in lower light better than the other type of visual photoreceptor, cone cells. Rods are usually found concentrated at the outer edges of the retina and are used in p ...
). The rods in the center of the stimulus will transduce the "light" signal to the brain, whereas different rods on the outside of the stimulus will send a "dark" signal to the brain due to lateral inhibition from
horizontal cells Horizontal cells are the laterally interconnecting neurons having cell bodies in the inner nuclear layer of the retina of vertebrate eyes. They help integrate and regulate the input from multiple photoreceptor cells. Among their functions, horizo ...
. This contrast between the light and dark creates a sharper image. (Compare
unsharp masking Unsharp masking (USM) is an image sharpening technique, first implemented in darkroom photography, but now commonly used in digital image processing software. Its name derives from the fact that the technique uses a blurred, or "unsharp", negat ...
in digital processing). This mechanism also creates the
Mach band Mach bands is an optical illusion named after the physicist Ernst Mach. It exaggerates the contrast between edges of the slightly differing shades of gray, as soon as they contact one another, by triggering edge-detection in the human visual s ...
visual effect. Visual lateral inhibition is the process in which
photoreceptor cells A photoreceptor cell is a specialized type of neuroepithelial cell found in the retina that is capable of visual phototransduction. The great biological importance of photoreceptors is that they convert light (visible electromagnetic radiatio ...
aid the brain in perceiving contrast within an image. Electromagnetic light enters the eye by passing through the
cornea The cornea is the transparent front part of the eye that covers the iris, pupil, and anterior chamber. Along with the anterior chamber and lens, the cornea refracts light, accounting for approximately two-thirds of the eye's total optical power ...
,
pupil The pupil is a black hole located in the center of the iris of the eye that allows light to strike the retina.Cassin, B. and Solomon, S. (1990) ''Dictionary of Eye Terminology''. Gainesville, Florida: Triad Publishing Company. It appears black ...
, and the
lens (optics) A lens is a transmissive optical device which focuses or disperses a light beam by means of refraction. A simple lens consists of a single piece of transparent material, while a compound lens consists of several simple lenses (''elements''), ...
. It then bypasses the
ganglion cells {{stack, A ganglion cell is a cell found in a ganglion. Examples of ganglion cells include: * Retinal ganglion cell (RGC) found in the ganglion cell layer of the retina * Cells that reside in the adrenal medulla, where they are involved in th ...
, amacrine cells,
bipolar cells A bipolar neuron, or bipolar cell, is a type of neuron that has two extensions (one axon and one dendrite). Many bipolar cells are specialized sensory neurons for the transmission of sense. As such, they are part of the sensory pathways for smell ...
, and
horizontal cells Horizontal cells are the laterally interconnecting neurons having cell bodies in the inner nuclear layer of the retina of vertebrate eyes. They help integrate and regulate the input from multiple photoreceptor cells. Among their functions, horizo ...
in order to reach the photoreceptors
rod cells Rod cells are photoreceptor cells in the retina of the eye that can function in lower light better than the other type of visual photoreceptor, cone cells. Rods are usually found concentrated at the outer edges of the retina and are used in p ...
which absorb light. The rods become stimulated by the energy from the light and release an excitatory neural signal to the horizontal cells. This excitatory signal, however, will only be transmitted by the
rod cells Rod cells are photoreceptor cells in the retina of the eye that can function in lower light better than the other type of visual photoreceptor, cone cells. Rods are usually found concentrated at the outer edges of the retina and are used in p ...
in the center of the ganglion cell receptive field to
ganglion cells {{stack, A ganglion cell is a cell found in a ganglion. Examples of ganglion cells include: * Retinal ganglion cell (RGC) found in the ganglion cell layer of the retina * Cells that reside in the adrenal medulla, where they are involved in th ...
because horizontal cells respond by sending an inhibitory signal to the neighboring rods to create a balance that allows mammals to perceive more vivid images. The central rod will send the light signals directly to
bipolar cells A bipolar neuron, or bipolar cell, is a type of neuron that has two extensions (one axon and one dendrite). Many bipolar cells are specialized sensory neurons for the transmission of sense. As such, they are part of the sensory pathways for smell ...
which in turn will relay the signal to the ganglion cells. Amacrine cells also produce lateral inhibition to
bipolar cells A bipolar neuron, or bipolar cell, is a type of neuron that has two extensions (one axon and one dendrite). Many bipolar cells are specialized sensory neurons for the transmission of sense. As such, they are part of the sensory pathways for smell ...
and
ganglion cells {{stack, A ganglion cell is a cell found in a ganglion. Examples of ganglion cells include: * Retinal ganglion cell (RGC) found in the ganglion cell layer of the retina * Cells that reside in the adrenal medulla, where they are involved in th ...
to perform various visual computations including image sharpening. The final visual signals will be sent to the thalamus and
cerebral cortex The cerebral cortex, also known as the cerebral mantle, is the outer layer of neural tissue of the cerebrum of the brain in humans and other mammals. The cerebral cortex mostly consists of the six-layered neocortex, with just 10% consisting of ...
, where additional lateral inhibition occurs.


Tactile inhibition

Sensory information collected by the peripheral nervous system is transmitted to specific areas of the primary
somatosensory In physiology, the somatosensory system is the network of neural structures in the brain and body that produce the perception of touch (haptic perception), as well as temperature (thermoception), body position (proprioception), and pain. It i ...
area in the
parietal cortex The parietal lobe is one of the four major lobes of the cerebral cortex in the brain of mammals. The parietal lobe is positioned above the temporal lobe and behind the frontal lobe and central sulcus. The parietal lobe integrates sensory inform ...
according to its origin on any given part of the body. For each neuron in the primary somatosensory area, there is a corresponding region of the skin that is stimulated or inhibited by that neuron. The regions that correspond to a location on the somatosensory cortex are mapped by a
homonculus A homunculus ( , , ; "little person") is a representation of a small human being, originally depicted as small statues made out of clay. Popularized in sixteenth-century alchemy and nineteenth-century fiction, it has historically referred to the ...
. This corresponding region of the skin is referred to as the neuron's
receptive field The receptive field, or sensory space, is a delimited medium where some physiological stimuli can evoke a sensory neuronal response in specific organisms. Complexity of the receptive field ranges from the unidimensional chemical structure of o ...
. The most sensitive regions of the body have the greatest representation in any given cortical area, but they also have the smallest receptive fields. The lips, tongue, and fingers are examples of this phenomenon. Each receptive field is composed of two regions: a central excitatory region and a peripheral inhibitory region. One entire receptive field can overlap with other receptive fields, making it difficult to differentiate between stimulation locations, but lateral inhibition helps to reduce that overlap. When an area of the skin is touched, the central excitatory region activates and the peripheral region is inhibited, creating a contrast in sensation and allowing sensory precision. The person can then pinpoint exactly which part of the skin is being touched. In the face of inhibition, only the neurons that are most stimulated and least inhibited will fire, so the firing pattern tends to concentrate at stimulus peaks. This ability becomes less precise as stimulation moves from areas with small receptive fields to larger receptive fields, e.g. moving from the fingertips to the forearm to the upper arm.


Auditory inhibition

Similarities between sensory processes of the skin and the auditory system suggest lateral inhibition could play a role in auditory processing. The
basilar membrane The basilar membrane is a stiff structural element within the cochlea of the inner ear which separates two liquid-filled tubes that run along the coil of the cochlea, the scala media and the scala tympani. The basilar membrane moves up and down in ...
in the
cochlea The cochlea is the part of the inner ear involved in hearing. It is a spiral-shaped cavity in the bony labyrinth, in humans making 2.75 turns around its axis, the modiolus. A core component of the cochlea is the Organ of Corti, the sensory org ...
has receptive fields similar to the receptive fields of the skin and eyes. Also, neighboring cells in the auditory cortex have similar specific frequencies that cause them to fire, creating a map of sound frequencies similar to that of the somatosensory cortex. Lateral inhibition in
tonotopic In physiology, tonotopy (from Greek tono = frequency and topos = place) is the spatial arrangement of where sounds of different frequency are processed in the brain. Tones close to each other in terms of frequency are represented in topologically ...
channels can be found in the
inferior colliculus The inferior colliculus (IC) (Latin for ''lower hill'') is the principal midbrain nucleus of the auditory pathway and receives input from several peripheral brainstem nuclei in the auditory pathway, as well as inputs from the auditory cortex. T ...
and at higher levels of auditory processing in the brain. However, the role that lateral inhibition plays in auditory sensation is unclear. Some scientists found that lateral inhibition could play a role in sharpening spatial input patterns and temporal changes in sensation, others propose it plays an important role in processing low or high tones. Lateral inhibition is also thought to play a role in suppressing
tinnitus Tinnitus is the perception of sound when no corresponding external sound is present. Nearly everyone experiences a faint "normal tinnitus" in a completely quiet room; but it is of concern only if it is bothersome, interferes with normal hearin ...
. Tinnitus can occur when damage to the
cochlea The cochlea is the part of the inner ear involved in hearing. It is a spiral-shaped cavity in the bony labyrinth, in humans making 2.75 turns around its axis, the modiolus. A core component of the cochlea is the Organ of Corti, the sensory org ...
creates a greater reduction of inhibition than excitation, allowing neurons to become aware of sound without sound actually reaching the ear. If certain sound frequencies that contribute to inhibition more than excitation are produced, tinnitus can be suppressed. Evidence supports findings that high-frequency sounds are best for inhibition and therefore best for reducing some types of tinnitus. In
mustached bat The family Mormoopidae contains bats known generally as mustached bats, ghost-faced bats, and naked-backed bats. They are found in the Americas from the Southwestern United States to Southeastern Brazil. They are distinguished by the presenc ...
s, evidence supports the hypothesis that lateral inhibitory processes of the auditory system contribute to improved auditory information processing. Lateral inhibition would occur in the medial and dorsal divisions of the
medial geniculate nucleus The medial geniculate nucleus (MGN) or medial geniculate body (MGB) is part of the auditory thalamus and represents the thalamic relay between the inferior colliculus (IC) and the auditory cortex (AC). It is made up of a number of sub-nuclei that ...
of mustached bats, along with
positive feedback Positive feedback (exacerbating feedback, self-reinforcing feedback) is a process that occurs in a feedback loop which exacerbates the effects of a small disturbance. That is, the effects of a perturbation on a system include an increase in the ...
. The exact functions of these regions are unclear, but they do contribute to selective auditory processing responses. These processes could play a role in auditory functioning of other mammals, such as cats.


Embryology

In embryology, the concept of lateral inhibition has been adapted to describe processes in the development of cell types. Lateral inhibition is described as a part of the
Notch signaling pathway The Notch signaling pathway is a highly Conserved sequence, conserved cell signaling system present in most animals. Mammals possess four different Notch proteins, notch receptors, referred to as NOTCH1, NOTCH2, Notch 3, NOTCH3, and NOTCH4. The ...
, a type of cell–cell interaction. Specifically, during
asymmetric cell division An asymmetric cell division produces two daughter cells with different cellular fates. This is in contrast to symmetric cell divisions which give rise to daughter cells of equivalent fates. Notably, stem cells divide asymmetrically to give rise to ...
one daughter cell adopts a particular fate that causes it to be copy of the original cell and the other daughter cell is inhibited from becoming a copy. Lateral inhibition is well documented in flies, worms and vertebrates. In all of these organisms, the transmembrane proteins Notch and Delta (or their homologues) have been identified as mediators of the interaction. Research has been more commonly associated with
Drosophila ''Drosophila'' () is a genus of flies, belonging to the family Drosophilidae, whose members are often called "small fruit flies" or (less frequently) pomace flies, vinegar flies, or wine flies, a reference to the characteristic of many species ...
, the fruit fly. Synthetic embryologists have also been able to replicate lateral inhibition dynamics in developing bacterial colonies, creating stripes and regular structures. Neuroblast with slightly more Delta protein on its cell surface will inhibit its neighboring cells from becoming neurons. In flies, frogs, and chicks, Delta is found in those cells that will become neurons, while Notch is elevated in those cells that become the glial cells.


See also

*
Optical illusion Within visual perception, an optical illusion (also called a visual illusion) is an illusion caused by the visual system and characterized by a visual perception, percept that arguably appears to differ from reality. Illusions come in a wide v ...
*
Mach band Mach bands is an optical illusion named after the physicist Ernst Mach. It exaggerates the contrast between edges of the slightly differing shades of gray, as soon as they contact one another, by triggering edge-detection in the human visual s ...
*
Cornsweet illusion The Cornsweet illusion, also known as the Craik–O'Brien–Cornsweet illusion or the Craik–Cornsweet illusion, is an optical illusion that was described in detail by Tom Cornsweet in the late 1960s. Kenneth Craik and Vivian O'Brien had mad ...
*
Grid illusion A grid illusion is any kind of grid that deceives a person's vision. The two most common types of grid illusions are the Hermann grid illusion and the scintillating grid illusion. Hermann grid illusion The Hermann grid illusion is an optical illu ...
* Range fractionation *
Edge effects In ecology, edge effects are changes in population or community structures that occur at the boundary of two or more habitats. Areas with small habitat fragments exhibit especially pronounced edge effects that may extend throughout the range. As ...
*
Simultaneous contrast A contrast effect is the enhancement or diminishment, relative to normal, of perception, cognition or related performance as a result of successive (immediately previous) or simultaneous exposure to a stimulus of lesser or greater value in the s ...


References


External links


Refutation of classical explanation of Hermann Grid Illusion
{{Neuroethology Neurophysiology